/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
/* Example code to talk to a MPU6050 MEMS accelerometer and gyroscope
This is taking to simple approach of simply reading registers. It's perfectly
possible to link up an interrupt line and set things up to read from the
inbuilt FIFO to make it more useful.
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.
You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (pin 6)) -> SDA on MPU6050 board
GPIO PICO_DEFAULT_I2C_SCL_PIN (On Pico this is GP5 (pin 7)) -> SCL on MPU6050 board
3.3v (pin 36) -> VCC on MPU6050 board
GND (pin 38) -> GND on MPU6050 board
*/
// By default these devices are on bus address 0x68
static int addr = 0x68;
#ifdef i2c_default
static void mpu6050_reset() {
// Two byte reset. First byte register, second byte data
// There are a load more options to set up the device in different ways that could be added here
uint8_t buf[] = {0x6B, 0x80};
i2c_write_blocking(i2c_default, addr, buf, 2, false);
sleep_ms(100); // Allow device to reset and stabilize
// Clear sleep mode (0x6B register, 0x00 value)
buf[1] = 0x00; // Clear sleep mode by writing 0x00 to the 0x6B register
i2c_write_blocking(i2c_default, addr, buf, 2, false);
sleep_ms(10); // Allow stabilization after waking up
}
static void mpu6050_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {
// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.
uint8_t buffer[6];
// Start reading acceleration registers from register 0x3B for 6 bytes
uint8_t val = 0x3B;
i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of bus
i2c_read_blocking(i2c_default, addr, buffer, 6, false);
for (int i = 0; i < 3; i++) {
accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);
}
// Now gyro data from reg 0x43 for 6 bytes
// The register is auto incrementing on each read
val = 0x43;
i2c_write_blocking(i2c_default, addr, &val, 1, true);
i2c_read_blocking(i2c_default, addr, buffer, 6, false); // False - finished with bus
for (int i = 0; i < 3; i++) {
gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;
}
// Now temperature from reg 0x41 for 2 bytes
// The register is auto incrementing on each read
val = 0x41;
i2c_write_blocking(i2c_default, addr, &val, 1, true);
i2c_read_blocking(i2c_default, addr, buffer, 2, false); // False - finished with bus
*temp = buffer[0] << 8 | buffer[1];
}
#endif
int main() {
stdio_init_all();
#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) || !defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c/mpu6050_i2c example requires a board with I2C pins
puts("Default I2C pins were not defined");
return 0;
#else
printf("Hello, MPU6050! Reading raw data from registers...\n");
// This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
i2c_init(i2c_default, 400 * 1000);
gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
// Make the I2C pins available to picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C));
mpu6050_reset();
int16_t acceleration[3], gyro[3], temp;
while (1) {
mpu6050_read_raw(acceleration, gyro, &temp);
// These are the raw numbers from the chip, so will need tweaking to be really useful.
// See the datasheet for more information
printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[0], acceleration[1], acceleration[2]);
printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[0], gyro[1], gyro[2]);
// Temperature is simple so use the datasheet calculation to get deg C.
// Note this is chip temperature.
printf("Temp. = %f\n", (temp / 340.0) + 36.53);
sleep_ms(100);
}
#endif
}
This firmware image was imported from the pico-examples repository.
Copyright 2020 (c) 2020 Raspberry Pi (Trading) Ltd.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Before flashing, please put your Raspberry Pi Pico™ chip in the bootloader mode by keeping the BOOTSEL button pressed while powering up. For more information, please take a look at your board's datasheet.
If you find yourself unable to perform any of the operations, please navigate to the troubleshooting, and the Q&A pages.
The "π Check installed version" button doesn't send your firmware to the Internet. Instead, its algorithm compares the firmware builds' UF2 block hashes safely in your web browser.
The installed firmware version is compared only with all the different versions (builds) of the same project.
Exercise caution while exploring projects of unknown origin. In principle, anyone can publish their firmware here. Projects endorsed by this website will always come with the "submitted by flashmypico" text written just below their title.
A part of your chip's unique RANDID number may be sent to the server if this project's author has enabled the installed version tracking feature. This number will only be logged if the project's author already has it, and has used it to enable this feature for this particular board.