/**
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
**/
#include <stdio.h>
#include "hardware/i2c.h"
#include "pico/binary_info.h"
#include "pico/stdlib.h"
/* Example code to talk to a BMP280 temperature and pressure sensor
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.
You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on BMP280
board
GPIO PICO_DEFAULT_I2C_SCK_PIN (on Pico this is GP5 (pin 7)) -> SCL on
BMP280 board
3.3v (pin 36) -> VCC on BMP280 board
GND (pin 38) -> GND on BMP280 board
*/
// device has default bus address of 0x76
#define ADDR _u(0x76)
// hardware registers
#define REG_CONFIG _u(0xF5)
#define REG_CTRL_MEAS _u(0xF4)
#define REG_RESET _u(0xE0)
#define REG_TEMP_XLSB _u(0xFC)
#define REG_TEMP_LSB _u(0xFB)
#define REG_TEMP_MSB _u(0xFA)
#define REG_PRESSURE_XLSB _u(0xF9)
#define REG_PRESSURE_LSB _u(0xF8)
#define REG_PRESSURE_MSB _u(0xF7)
// calibration registers
#define REG_DIG_T1_LSB _u(0x88)
#define REG_DIG_T1_MSB _u(0x89)
#define REG_DIG_T2_LSB _u(0x8A)
#define REG_DIG_T2_MSB _u(0x8B)
#define REG_DIG_T3_LSB _u(0x8C)
#define REG_DIG_T3_MSB _u(0x8D)
#define REG_DIG_P1_LSB _u(0x8E)
#define REG_DIG_P1_MSB _u(0x8F)
#define REG_DIG_P2_LSB _u(0x90)
#define REG_DIG_P2_MSB _u(0x91)
#define REG_DIG_P3_LSB _u(0x92)
#define REG_DIG_P3_MSB _u(0x93)
#define REG_DIG_P4_LSB _u(0x94)
#define REG_DIG_P4_MSB _u(0x95)
#define REG_DIG_P5_LSB _u(0x96)
#define REG_DIG_P5_MSB _u(0x97)
#define REG_DIG_P6_LSB _u(0x98)
#define REG_DIG_P6_MSB _u(0x99)
#define REG_DIG_P7_LSB _u(0x9A)
#define REG_DIG_P7_MSB _u(0x9B)
#define REG_DIG_P8_LSB _u(0x9C)
#define REG_DIG_P8_MSB _u(0x9D)
#define REG_DIG_P9_LSB _u(0x9E)
#define REG_DIG_P9_MSB _u(0x9F)
// number of calibration registers to be read
#define NUM_CALIB_PARAMS 24
struct bmp280_calib_param {
// temperature params
uint16_t dig_t1;
int16_t dig_t2;
int16_t dig_t3;
// pressure params
uint16_t dig_p1;
int16_t dig_p2;
int16_t dig_p3;
int16_t dig_p4;
int16_t dig_p5;
int16_t dig_p6;
int16_t dig_p7;
int16_t dig_p8;
int16_t dig_p9;
};
#ifdef i2c_default
void bmp280_init() {
// use the "handheld device dynamic" optimal setting (see datasheet)
uint8_t buf[2];
// 500ms sampling time, x16 filter
const uint8_t reg_config_val = ((0x04 << 5) | (0x05 << 2)) & 0xFC;
// send register number followed by its corresponding value
buf[0] = REG_CONFIG;
buf[1] = reg_config_val;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
// osrs_t x1, osrs_p x4, normal mode operation
const uint8_t reg_ctrl_meas_val = (0x01 << 5) | (0x03 << 2) | (0x03);
buf[0] = REG_CTRL_MEAS;
buf[1] = reg_ctrl_meas_val;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
}
void bmp280_read_raw(int32_t* temp, int32_t* pressure) {
// BMP280 data registers are auto-incrementing and we have 3 temperature and
// pressure registers each, so we start at 0xF7 and read 6 bytes to 0xFC
// note: normal mode does not require further ctrl_meas and config register writes
uint8_t buf[6];
uint8_t reg = REG_PRESSURE_MSB;
i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // true to keep master control of bus
i2c_read_blocking(i2c_default, ADDR, buf, 6, false); // false - finished with bus
// store the 20 bit read in a 32 bit signed integer for conversion
*pressure = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
*temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
}
void bmp280_reset() {
// reset the device with the power-on-reset procedure
uint8_t buf[2] = { REG_RESET, 0xB6 };
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
}
// intermediate function that calculates the fine resolution temperature
// used for both pressure and temperature conversions
int32_t bmp280_convert(int32_t temp, struct bmp280_calib_param* params) {
// use the 32-bit fixed point compensation implementation given in the
// datasheet
int32_t var1, var2;
var1 = ((((temp >> 3) - ((int32_t)params->dig_t1 << 1))) * ((int32_t)params->dig_t2)) >> 11;
var2 = (((((temp >> 4) - ((int32_t)params->dig_t1)) * ((temp >> 4) - ((int32_t)params->dig_t1))) >> 12) * ((int32_t)params->dig_t3)) >> 14;
return var1 + var2;
}
int32_t bmp280_convert_temp(int32_t temp, struct bmp280_calib_param* params) {
// uses the BMP280 calibration parameters to compensate the temperature value read from its registers
int32_t t_fine = bmp280_convert(temp, params);
return (t_fine * 5 + 128) >> 8;
}
int32_t bmp280_convert_pressure(int32_t pressure, int32_t temp, struct bmp280_calib_param* params) {
// uses the BMP280 calibration parameters to compensate the pressure value read from its registers
int32_t t_fine = bmp280_convert(temp, params);
int32_t var1, var2;
uint32_t converted = 0.0;
var1 = (((int32_t)t_fine) >> 1) - (int32_t)64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t)params->dig_p6);
var2 += ((var1 * ((int32_t)params->dig_p5)) << 1);
var2 = (var2 >> 2) + (((int32_t)params->dig_p4) << 16);
var1 = (((params->dig_p3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t)params->dig_p2) * var1) >> 1)) >> 18;
var1 = ((((32768 + var1)) * ((int32_t)params->dig_p1)) >> 15);
if (var1 == 0) {
return 0; // avoid exception caused by division by zero
}
converted = (((uint32_t)(((int32_t)1048576) - pressure) - (var2 >> 12))) * 3125;
if (converted < 0x80000000) {
converted = (converted << 1) / ((uint32_t)var1);
} else {
converted = (converted / (uint32_t)var1) * 2;
}
var1 = (((int32_t)params->dig_p9) * ((int32_t)(((converted >> 3) * (converted >> 3)) >> 13))) >> 12;
var2 = (((int32_t)(converted >> 2)) * ((int32_t)params->dig_p8)) >> 13;
converted = (uint32_t)((int32_t)converted + ((var1 + var2 + params->dig_p7) >> 4));
return converted;
}
void bmp280_get_calib_params(struct bmp280_calib_param* params) {
// raw temp and pressure values need to be calibrated according to
// parameters generated during the manufacturing of the sensor
// there are 3 temperature params, and 9 pressure params, each with a LSB
// and MSB register, so we read from 24 registers
uint8_t buf[NUM_CALIB_PARAMS] = { 0 };
uint8_t reg = REG_DIG_T1_LSB;
i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // true to keep master control of bus
// read in one go as register addresses auto-increment
i2c_read_blocking(i2c_default, ADDR, buf, NUM_CALIB_PARAMS, false); // false, we're done reading
// store these in a struct for later use
params->dig_t1 = (uint16_t)(buf[1] << 8) | buf[0];
params->dig_t2 = (int16_t)(buf[3] << 8) | buf[2];
params->dig_t3 = (int16_t)(buf[5] << 8) | buf[4];
params->dig_p1 = (uint16_t)(buf[7] << 8) | buf[6];
params->dig_p2 = (int16_t)(buf[9] << 8) | buf[8];
params->dig_p3 = (int16_t)(buf[11] << 8) | buf[10];
params->dig_p4 = (int16_t)(buf[13] << 8) | buf[12];
params->dig_p5 = (int16_t)(buf[15] << 8) | buf[14];
params->dig_p6 = (int16_t)(buf[17] << 8) | buf[16];
params->dig_p7 = (int16_t)(buf[19] << 8) | buf[18];
params->dig_p8 = (int16_t)(buf[21] << 8) | buf[20];
params->dig_p9 = (int16_t)(buf[23] << 8) | buf[22];
}
#endif
int main() {
stdio_init_all();
#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) || !defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c / bmp280_i2c example requires a board with I2C pins
puts("Default I2C pins were not defined");
return 0;
#else
// useful information for picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C));
bi_decl(bi_program_description("BMP280 I2C example for the Raspberry Pi Pico"));
printf("Hello, BMP280! Reading temperaure and pressure values from sensor...\n");
// I2C is "open drain", pull ups to keep signal high when no data is being sent
i2c_init(i2c_default, 100 * 1000);
gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
// configure BMP280
bmp280_init();
// retrieve fixed compensation params
struct bmp280_calib_param params;
bmp280_get_calib_params(¶ms);
int32_t raw_temperature;
int32_t raw_pressure;
sleep_ms(250); // sleep so that data polling and register update don't collide
while (1) {
bmp280_read_raw(&raw_temperature, &raw_pressure);
int32_t temperature = bmp280_convert_temp(raw_temperature, ¶ms);
int32_t pressure = bmp280_convert_pressure(raw_pressure, raw_temperature, ¶ms);
printf("Pressure = %.3f kPa\n", pressure / 1000.f);
printf("Temp. = %.2f C\n", temperature / 100.f);
// poll every 500ms
sleep_ms(500);
}
#endif
}