/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/interp.h"
void times_table() {
puts("9 times table:");
// Initialise lane 0 on interp0 on this core
interp_config cfg = interp_default_config();
interp_set_config(interp0, 0, &cfg);
interp0->accum[0] = 0;
interp0->base[0] = 9;
for (int i = 0; i < 10; ++i)
printf("%d\n", interp0->pop[0]);
}
void moving_mask() {
interp_config cfg = interp_default_config();
interp0->accum[0] = 0x1234abcd;
puts("Masking:");
printf("ACCUM0 = %08x\n", interp0->accum[0]);
for (int i = 0; i < 8; ++i) {
// LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"
interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
interp_set_config(interp0, 0, &cfg);
// Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx added
printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
}
puts("Masking with sign extension:");
interp_config_set_signed(&cfg, true);
for (int i = 0; i < 8; ++i) {
interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
interp_set_config(interp0, 0, &cfg);
printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
}
}
void cross_lanes() {
interp_config cfg = interp_default_config();
interp_config_set_cross_result(&cfg, true);
// ACCUM0 gets lane 1 result:
interp_set_config(interp0, 0, &cfg);
// ACCUM1 gets lane 0 result:
interp_set_config(interp0, 1, &cfg);
interp0->accum[0] = 123;
interp0->accum[1] = 456;
interp0->base[0] = 1;
interp0->base[1] = 0;
puts("Lane result crossover:");
for (int i = 0; i < 10; ++i) {
uint32_t peek0 = interp0->peek[0];
uint32_t pop1 = interp0->pop[1];
printf("PEEK0, POP1: %d, %d\n", peek0, pop1);
}
}
void simple_blend1() {
puts("Simple blend 1:");
interp_config cfg = interp_default_config();
interp_config_set_blend(&cfg, true);
interp_set_config(interp0, 0, &cfg);
cfg = interp_default_config();
interp_set_config(interp0, 1, &cfg);
interp0->base[0] = 500;
interp0->base[1] = 1000;
for (int i = 0; i <= 6; i++) {
// set fraction to value between 0 and 255
interp0->accum[1] = 255 * i / 6;
// β 500 + (1000 - 500) * i / 6;
printf("%d\n", (int) interp0->peek[1]);
}
}
/// \tag::simple_blend2[]
void print_simple_blend2_results(bool is_signed) {
// lane 1 signed flag controls whether base 0/1 are treated as signed or unsigned
interp_config cfg = interp_default_config();
interp_config_set_signed(&cfg, is_signed);
interp_set_config(interp0, 1, &cfg);
for (int i = 0; i <= 6; i++) {
interp0->accum[1] = 255 * i / 6;
if (is_signed) {
printf("%d\n", (int) interp0->peek[1]);
} else {
printf("0x%08x\n", (uint) interp0->peek[1]);
}
}
}
void simple_blend2() {
puts("Simple blend 2:");
interp_config cfg = interp_default_config();
interp_config_set_blend(&cfg, true);
interp_set_config(interp0, 0, &cfg);
interp0->base[0] = (uint32_t) -1000;
interp0->base[1] = 1000;
puts("signed:");
print_simple_blend2_results(true);
puts("unsigned:");
print_simple_blend2_results(false);
}
/// \end::simple_blend2[]
void simple_blend3() {
puts("Simple blend 3:");
interp_config cfg = interp_default_config();
interp_config_set_blend(&cfg, true);
interp_set_config(interp0, 0, &cfg);
cfg = interp_default_config();
interp_set_config(interp0, 1, &cfg);
interp0->accum[1] = 128;
interp0->base01 = 0x30005000;
printf("0x%08x\n", (int) interp0->peek[1]);
interp0->base01 = 0xe000f000;
printf("0x%08x\n", (int) interp0->peek[1]);
interp_config_set_signed(&cfg, true);
interp_set_config(interp0, 1, &cfg);
interp0->base01 = 0xe000f000;
printf("0x%08x\n", (int) interp0->peek[1]);
}
void linear_interpolation() {
puts("Linear interpolation:");
const int uv_fractional_bits = 12;
// for lane 0
// shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0)
// to 0000 0000 000X XXXX XXXX XXXX XXXX XXX0
// i.e. non fractional part times 2 (for uint16_t)
interp_config cfg = interp_default_config();
interp_config_set_shift(&cfg, uv_fractional_bits - 1);
interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
interp_config_set_blend(&cfg, true);
interp_set_config(interp0, 0, &cfg);
// for lane 1
// shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0 via cross input)
// to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF
cfg = interp_default_config();
interp_config_set_shift(&cfg, uv_fractional_bits - 8);
interp_config_set_signed(&cfg, true);
interp_config_set_cross_input(&cfg, true); // signed blending
interp_set_config(interp0, 1, &cfg);
int16_t samples[] = {0, 10, -20, -1000, 500};
// step is 1/4 in our fractional representation
uint step = (1 << uv_fractional_bits) / 4;
interp0->accum[0] = 0; // initial sample_offset;
interp0->base[2] = (uintptr_t) samples;
for (int i = 0; i < 16; i++) {
// result2 = samples + (lane0 raw result)
// i.e. ptr to the first of two samples to blend between
int16_t *sample_pair = (int16_t *) interp0->peek[2];
interp0->base[0] = sample_pair[0];
interp0->base[1] = sample_pair[1];
uint32_t peek1 = interp0->peek[1];
uint32_t add_raw1 = interp0->add_raw[1];
printf("%d\t(%d%% between %d and %d)\n", (int) peek1,
100 * (add_raw1 & 0xff) / 0xff,
sample_pair[0], sample_pair[1]);
interp0->add_raw[0] = step;
}
}
void clamp() {
puts("Clamp:");
interp_config cfg = interp_default_config();
interp_config_set_clamp(&cfg, true);
interp_config_set_shift(&cfg, 2);
// set mask according to new position of sign bit..
interp_config_set_mask(&cfg, 0, 29);
// ...so that the shifted value is correctly sign extended
interp_config_set_signed(&cfg, true);
interp_set_config(interp1, 0, &cfg);
interp1->base[0] = 0;
interp1->base[1] = 255;
for (int i = -1024; i <= 1024; i += 256) {
interp1->accum[0] = i;
printf("%d\t%d\n", i, (int) interp1->peek[0]);
}
}
/// \tag::texture_mapping[]
void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint texture_height_bits,
uint uv_fractional_bits) {
interp_config cfg = interp_default_config();
// set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when adding
// it to the the lane base to make the lane result
interp_config_set_add_raw(&cfg, true);
interp_config_set_shift(&cfg, uv_fractional_bits);
interp_config_set_mask(&cfg, 0, texture_width_bits - 1);
interp_set_config(interp0, 0, &cfg);
interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);
interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits + texture_height_bits - 1);
interp_set_config(interp0, 1, &cfg);
interp0->base[2] = (uintptr_t) texture;
}
void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv, uint count) {
// u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits
// du, dv are texture coordinate steps across the span in same fixed point.
interp0->accum[0] = u;
interp0->base[0] = du;
interp0->accum[1] = v;
interp0->base[1] = dv;
for (uint i = 0; i < count; i++) {
// equivalent to
// uint32_t sm_result0 = (accum0 >> uv_fractional_bits) & (1 << (texture_width_bits - 1);
// uint32_t sm_result1 = (accum1 >> uv_fractional_bits) & (1 << (texture_height_bits - 1);
// uint8_t *address = texture + sm_result0 + (sm_result1 << texture_width_bits);
// output[i] = *address;
// accum0 = du + accum0;
// accum1 = dv + accum1;
// result2 is the texture address for the current pixel;
// popping the result advances to the next iteration
output[i] = *(uint8_t *) interp0->pop[2];
}
}
void texture_mapping() {
puts("Affine Texture mapping (with texture wrap):");
uint8_t texture[] = {
0x00, 0x01, 0x02, 0x03,
0x10, 0x11, 0x12, 0x13,
0x20, 0x21, 0x22, 0x23,
0x30, 0x31, 0x32, 0x33,
};
// 4x4 texture
texture_mapping_setup(texture, 2, 2, 16);
uint8_t output[12];
uint32_t du = 65536 / 2; // step of 1/2
uint32_t dv = 65536 / 3; // step of 1/3
texture_mapped_span(output, 0, 0, du, dv, 12);
for (uint i = 0; i < 12; i++) {
printf("0x%02x\n", output[i]);
}
}
/// \end::texture_mapping[]
int main() {
stdio_init_all();
puts("Interpolator example");
times_table();
moving_mask();
cross_lanes();
simple_blend1();
simple_blend2();
simple_blend3();
clamp();
linear_interpolation();
texture_mapping();
return 0;
}
This firmware image was imported from the pico-examples repository.
Copyright 2020 (c) 2020 Raspberry Pi (Trading) Ltd.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Before flashing, please put your Raspberry Pi Pico™ chip in the bootloader mode by keeping the BOOTSEL button pressed while powering up. For more information, please take a look at your board's datasheet.
If you find yourself unable to perform any of the operations, please navigate to the troubleshooting, and the Q&A pages.
The "π Check installed version" button doesn't send your firmware to the Internet. Instead, its algorithm compares the firmware builds' UF2 block hashes safely in your web browser.
The installed firmware version is compared only with all the different versions (builds) of the same project.
Exercise caution while exploring projects of unknown origin. In principle, anyone can publish their firmware here. Projects endorsed by this website will always come with the "submitted by flashmypico" text written just below their title.
A part of your chip's unique RANDID number may be sent to the server if this project's author has enabled the installed version tracking feature. This number will only be logged if the project's author already has it, and has used it to enable this feature for this particular board.