/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
/* Example code to talk to a MCP9808 ±0.5°C Digital temperature Sensor
This reads and writes to registers on the board.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (physical pin 6)) -> SDA on MCP9808 board
GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is GP5 (physical pin 7)) -> SCL on MCP9808 board
Vsys (physical pin 39) -> VDD on MCP9808 board
GND (physical pin 38) -> GND on MCP9808 board
*/
//The bus address is determined by the state of pins A0, A1 and A2 on the MCP9808 board
static uint8_t ADDRESS = 0x18;
//hardware registers
const uint8_t REG_POINTER = 0x00;
const uint8_t REG_CONFIG = 0x01;
const uint8_t REG_TEMP_UPPER = 0x02;
const uint8_t REG_TEMP_LOWER = 0x03;
const uint8_t REG_TEMP_CRIT = 0x04;
const uint8_t REG_TEMP_AMB = 0x05;
const uint8_t REG_RESOLUTION = 0x08;
void mcp9808_check_limits(uint8_t upper_byte) {
// Check flags and raise alerts accordingly
if ((upper_byte & 0x40) == 0x40) { //TA > TUPPER
printf("Temperature is above the upper temperature limit.\n");
}
if ((upper_byte & 0x20) == 0x20) { //TA < TLOWER
printf("Temperature is below the lower temperature limit.\n");
}
if ((upper_byte & 0x80) == 0x80) { //TA > TCRIT
printf("Temperature is above the critical temperature limit.\n");
}
}
float mcp9808_convert_temp(uint8_t upper_byte, uint8_t lower_byte) {
float temperature;
//Check if TA <= 0°C and convert to denary accordingly
if ((upper_byte & 0x10) == 0x10) {
upper_byte = upper_byte & 0x0F;
temperature = 256 - (((float) upper_byte * 16) + ((float) lower_byte / 16));
} else {
temperature = (((float) upper_byte * 16) + ((float) lower_byte / 16));
}
return temperature;
}
#ifdef i2c_default
void mcp9808_set_limits() {
//Set an upper limit of 30°C for the temperature
uint8_t upper_temp_msb = 0x01;
uint8_t upper_temp_lsb = 0xE0;
//Set a lower limit of 20°C for the temperature
uint8_t lower_temp_msb = 0x01;
uint8_t lower_temp_lsb = 0x40;
//Set a critical limit of 40°C for the temperature
uint8_t crit_temp_msb = 0x02;
uint8_t crit_temp_lsb = 0x80;
uint8_t buf[3];
buf[0] = REG_TEMP_UPPER;
buf[1] = upper_temp_msb;
buf[2] = upper_temp_lsb;
i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
buf[0] = REG_TEMP_LOWER;
buf[1] = lower_temp_msb;
buf[2] = lower_temp_lsb;
i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
buf[0] = REG_TEMP_CRIT;
buf[1] = crit_temp_msb;
buf[2] = crit_temp_lsb;;
i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
}
#endif
int main() {
stdio_init_all();
#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) || !defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c/mcp9808_i2c example requires a board with I2C pins
puts("Default I2C pins were not defined");
#else
printf("Hello, MCP9808! Reading raw data from registers...\n");
// This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
i2c_init(i2c_default, 400 * 1000);
gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
// Make the I2C pins available to picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C));
mcp9808_set_limits();
uint8_t buf[2];
uint16_t upper_byte;
uint16_t lower_byte;
float temperature;
while (1) {
// Start reading ambient temperature register for 2 bytes
i2c_write_blocking(i2c_default, ADDRESS, ®_TEMP_AMB, 1, true);
i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
upper_byte = buf[0];
lower_byte = buf[1];
//isolates limit flags in upper byte
mcp9808_check_limits(upper_byte & 0xE0);
//clears flag bits in upper byte
temperature = mcp9808_convert_temp(upper_byte & 0x1F, lower_byte);
printf("Ambient temperature: %.4f°C\n", temperature);
sleep_ms(1000);
}
#endif
}
This firmware image was imported from the pico-examples repository.
Copyright 2020 (c) 2020 Raspberry Pi (Trading) Ltd.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Before flashing, please put your Raspberry Pi Pico™ chip in the bootloader mode by keeping the BOOTSEL button pressed while powering up. For more information, please take a look at your board's datasheet.
If you find yourself unable to perform any of the operations, please navigate to the troubleshooting, and the Q&A pages.
The "🔍 Check installed version" button doesn't send your firmware to the Internet. Instead, its algorithm compares the firmware builds' UF2 block hashes safely in your web browser.
The installed firmware version is compared only with all the different versions (builds) of the same project.
Exercise caution while exploring projects of unknown origin. In principle, anyone can publish their firmware here. Projects endorsed by this website will always come with the "submitted by flashmypico" text written just below their title.
A part of your chip's unique RANDID number may be sent to the server if this project's author has enabled the installed version tracking feature. This number will only be logged if the project's author already has it, and has used it to enable this feature for this particular board.